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N-Tosyl-2,6-diisopropyl-4-(2,3-dimethoxylbenzoylamide)aniline (1) has been synthesized and its metal
ion (Na+, K+, Ca2+, Mg2+) coordinating properties investigated by FT-IR, ESI-MS, and 1H NMR methods.
Among the tested metal ions, the overall stability constant (log K) for Mg2+ (6.89) is the highest (Na+,
5.64; K+, 5.43; Ca2+, 5.51) in 10% water/THF at 25.0 ± 0.5 �C determined by UV–vis spectroscopy, indicat-
ing that 1 is a potent ionophore for Mg2+ ion.

� 2009 Elsevier Ltd. All rights reserved.
Magnesium is the dominant divalent intracellular cation and is
essential for a variety of cellular processes such as enzyme func-
tion, DNA and protein synthesis, and the regulation of ion chan-
nels.1 Despite the abundance and importance of magnesium,
little is known about the molecular nature of proteins involved
in cellular magnesium transport at the molecular level.1,2 The
amide group as a peptide linkage unit binds Ca2+ in Ca-selective
proteins, and is the donor in potassium ion channels and probably
also in Ca2+ and Na+ ion channels.3 At the same time, the amide do-
nors are of considerable importance in the acylamide oxidization
or metal cation coupling cases.4 Sulfonamide derivatives are the
most important class of drugs, displaying activities including anti-
bacterial, anticarbonic anhydrase, diuretic, hypoglycemic, and anti-
thyroid effectiveness.5 In view of these facts, it should be
interesting to introduce the amide moiety with metallophilic prop-
erties6 into sulfonamide derivatives7a,8 to make use of both func-
tionalities in the potentiation of biological activities. Although a
few examples (e.g., coumarin 343 and nitrilotriacetamide)6

showed that amide donor could selectively bind and sense some
metal ions, such as Ca2+, Mg2+, Cd2+, Pb2+, Ni2+, and La3+;7,8 in fact,
very little attention has been paid to the sulfonamide analogues
containing acylamide moiety as an appropriate metal ionophore.

In this Letter, we present the structural and spectroscopic char-
acterization of a new sulfonamide compound 1 and its metal ion
affinities. The receptor 1 shows a relatively high selectivity to the
ll rights reserved.

.

magnesium ion over alkali metal ions (Na+, K+) and other alkaline
earth metal ions (Ca2+).

Compound 1 was synthesized by the reaction of 2,3-dimethoxyl
benzoyl chloride with N-tosyl-4-amino-2,6-diisopropyl aniline9

under mild conditions in 78% yield (Scheme 1).10 Colorless crystals
of 1 were obtained from a dichloromethane solution.11 Structural
analysis shows that the central phenyl ring is nearly coplanar with
the dimethoxy-substituted phenyl group (dihedral angle: 6.22�).
There is an intramolecular N–H� � �O hydrogen bond between the
amide N2H and a methoxy group (O1� � �N2, 2.674(6) Å; N2–
H2A� � �O1, 141�; Fig. 1). The extended solid-state structure of 1 is
derived mainly from intermolecular hydrogen bonding and p–p
stacking interactions. A pair of symmetry-related N–H� � �O hydro-
gen bonds in the R2

2ð8Þ motif between the sulfonamide N1H group
and one sulfonyl oxygen atom connects two molecules into a di-
mer, which is further linked by p–p stacking interactions into a
one-dimensional chain along the a-axis (Fig. S1, see Supplementary
data).

In the infrared spectrum of 1 (Fig. 2A (a)), the bands at 3289 and
3250 cm�1 are assigned to the N–H stretching vibration, and the
strongest band at 1660 cm�1 is due to the stretching of the C@O
group. The N–H bending vibrations of amide groups are at 1596,
1577, and 1548 cm�1, and the characteristic strong bands at
1267 and 1325–1303 cm�1 can be attributed to C–O and O@S@O.
To examine its cation sensing properties, compound 1 was mixed
with equimolar alkali metal or alkaline earth metal chloride (NaCl,
KCl, CaCl2, or MgCl2�6H2O, respectively) in methanol and stirred
until complete dissolution, and then dried under vacuum at



Figure 1. Molecular structure of 1, showing the intramolecular N–H� � �O hydrogen bond (thermal ellipsoids at 50% probability level; noninteracting hydrogen atoms are
omitted for clarity.). Selected bond distance (Å): N2–C4, 1.409(3); N2–C13, 1.352(3); N1–C1, 1.444(3); S1–O4, 1.420(2); S1–O5, 1.434(2).

Scheme 1. Synthesis of 1.
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50 �C. There was no obvious change in their FT-IR spectra except
that of the Mg-loaded adduct, in which the vibration of carbonyl
at 1660 cm�1 split into two bands (1660, 1631 cm�1; Fig. 2A).
When the metal-to-receptor ratio was increased to 5:1, the C@O
stretching for the Ca2+ and Mg2+ adducts completely shifted to
1629 and 1634 cm�1, respectively (Fig. 2B), indicating the transfer
of the lone pair electrons from oxygen to metal, which leads to the
relaxation and bathochromic shift of the C@O group.

In addition, p-electron delocalization of the aryl ring generated
an approximate p–p conjugation cumulative double bonds of
Caryl@C@O asymmetric stretching at 2107 and 2247 cm�1 for the
Ca2+- and Mg2+-treated samples.12 The wide and strong bands at
472 and 559 cm�1 are ascribed to Mg–O and Ca–O bond formation,
respectively.13 In contrast, the alkali metals Na+ and K+ showed lit-
tle influence on the infrared absorption of 1, suggesting that the
binding ability of 1 with Na+ or K+ is much weaker than with
Ca2+ or Mg2+, which is probably due to the far lower charge density
of Na+ (1.05 q Å�1) and K+ (0.75 q Å�1) than of Mg2+ (2.32 q Å�1)
and Ca2+ (1.75 q Å�1).6b The electronic delocalization may also af-
fect the N–H stretching, but the broad peak of water at 3200–
3500 cm�1 caused by deliquescence of the Ca2+ or Mg2+ adducts
most probably shielded the stretching absorbance of N–H. The
vibration absorption of O@S@O in all samples remained un-
changed. These results indicate the preference of the amide group
to metal ions via formation of the M–O@C bond.8

Electronic spectral titrations were performed to study the affin-
ity of 1 to different metals. Binding constants for the 1:1 complex-
ation were obtained by a nonlinear least-square fit of the
absorbance (X) versus the concentration of the metal ion added
(CM) according to Eq. 1.14 Stability constants for both 1:1 and 2:1
(L:M) complexes were calculated using the DYNAFIT program.15 Fig-
ure 3a shows the changes in the UV–vis spectrum of 1 upon addi-
tion of sodium ion. The band at 277 nm decreased gradually as the
concentration of sodium ion increased, and a well-defined isos-
bestic point was observed at 315 nm. Similar phenomena were also
observed in the titration of K+, Ca2+, or Mg2+ to 1, corresponding to
the formation of the 1:1 complex except for the magnesium ion
(Fig. S2). The stability constant (log K) of 1 with the three metal
ions, Na+ (5.64), K+ (5.43), and Ca2+ (5.51), is very close (error < 10%,
r2 0.98).

X ¼ X0 þ
Xlim � X0

2C0

� C0 þ CM þ 1=Ks � ½ðC0 þ CM þ 1=KsÞ2 � 4C0CM�1=2
h i

ð1Þ

Mg2+ is usually thought to be ‘UV-silent’ for its stable electron
configuration (s2p6). However, intense absorption bands occur in
the range of 200–350 nm upon addition of 1. This may be attrib-
uted to the charge transfer involving the ‘lone pair’ on the Mg2+.
The variation of these bands with increasing concentration of 1 is
seen in Figure 3b. The free Mg2+ ion shows a band at about
225 nm, while the highest intensity occurs for
3.7 � 10�3 mol dm�3 of 1. The spectra represent two successive
equilibria. The lower intensity set at about 245 nm corresponds
to the formation of the mono-ligand complex, while the subse-
quent set (277 nm) with higher intensity corresponds to the for-
mation of the bis-ligand complex. Therefore the magnesium
complexation by 1 should consider both ML and ML2 stoichiome-
tries. The inset shows that the fit to the curve of the absorbance
intensity versus concentration of 1 can be fulfilled by the DYNAFIT

program, and the stepwise stability constants for magnesium
(log K1 = 4.50 for ML and log K2 = 2.39 for ML2) were calculated.
The results show that Mg2+ (the smallest cation among the series)
has unique chemical properties, and one to two receptor molecules
could be accommodated around it.

Mass spectrometry measurements were performed for com-
plexes of 1 with equimolar amounts of K+, Na+, Ca2+, and Mg2+

(Fig. 4). In the case of the magnesium complex, the stoichiometry



Figure 2. FT-IR spectra of (a) compound 1, (b) 1 + Na+, (c) 1 + K+, (d) 1 + Ca2+, and (e)
1 + Mg2+. The molar ratios of metal-to-receptor are 1:1 (A) and 5:1 (B) in the
experiments in (b)–(e).

Figure 4. ESI-MS spectrum of 1 with equimolar amounts of sodium, potassium,
calcium and magnesium ions in THF solution.
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1:1 is the majority as indicated by signals at m/z 267.6 (100.0%,
[L+Mg]2+) and 569.7 (27.3%, [L+Mg+Cl]+). The minor peak at m/z
522.7 (33.0%, [2L+Mg]2+) is for the bis-ligand complex. The mass
spectra of other metal complexes show only the 1:1 complex.
The total content of the magnesium complex is much higher than
Figure 3. (a) Changes in the absorption spectra of ligand 1 (3.0 � 10�5 mol dm�3) upon t
of magnesium chloride (1.3 � 10�4 mol dm�3) upon titration of ligand 1 in 10% water
theoretical 1:1 and 1:2 (M:L) stoichiometry (–) fits using DYNAFIT program.
those of other metals ([L+Na]+, m/z: 533.7, 39.6%; [L+K]+, m/z:
549.7, 64.0%; and [L+Ca]2+, m/z: 275.6, 29.5%). The results also
demonstrate that compound 1 has high selectivity for magnesium
ion. Meanwhile, to further validate the abovementioned conclu-
sion, ion chromatographic analyses were performed on this system
(Fig. S3, see Supplementary data). According to the relation of ion
content corresponding to its peak area, the concentration of Na+,
K+, Ca2+, and Mg2+ extraction in deionized water was calculated
as 0.82, 0.50, 0.74, and 0.07 mg dm�3, respectively. The concentra-
tion of Mg2+ is the lowest, indicating that its complex is the hardest
to hydrolyze among these alkali metal or alkaline earth complexes.
The results also revealed that the binding ability of 1 to Na+, K+, and
Ca2+ is quite close, as shown by the stability constants.

To clarify the complexation environment of the metal ions with
the receptor 1, 1H NMR examination was carried out in acetone-d6

with a 1:1 molar ratio of magnesium chloride hexahydrate and 1.
Changes of the chemical shifts of ‘free’ ligand 1 and the corre-
sponding complex are shown in Figure 5. Regarding the complex-
ation of 1 with Mg2+, amide proton showed large magnetic shift
itration of sodium chloride in 10% water/THF (1/6 to 5 equiv); (b) absorption spectra
/THF (up to 2.1 equiv). Inset: absorbance at 277 nm (j) as a function of [1] with



Scheme 2. Proposed binding mode for the magnesium complex.

Figure 5. 1H NMR spectra (400 MHz, acetone-d6) of (a) free ‘ligand’ 1, and (b) 1 + MgCl2�6H2O.
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changes (Dd = +2.21) because of the reduction of electron density
on the oxygen atom by coordinated cation. The methoxy proton
2 showed small shift tendency (Dd = +0.89) due to the weak inter-
action of the oxygen atom with the metal ion. The aromatic proton
signals (a–f) shifted slightly up-field (Dd = �0.56 to �0.11). In con-
trast to proton 2, a large up-field shift of proton 1 (Dd = �2.38) was
induced upon complexation. Interestingly, each peak of methyl
proton 3 corresponds to a different chemical environment, indicat-
ing the formation of a locally distorted structure. Furthermore, sul-
fonamide NH signals shifted up-field (Dd = �0.93) upon the
addition of metal ions. The result indicates that the contribution
of different oxygen-containing groups of the ‘ligand’ to the com-
plex formation is different. On the basis of FT-IR, UV–vis titration,
and 1H NMR studies, plausible structures of the magnesium com-
plexes are illustrated in Scheme 2. We adopt the term coordinative
unsaturation to describe the complex Mg�1 that has more open
coordination sites where another ligand could be bonded in a sim-
ilar fashion.16

In summary, we report a new sulfonamide-amide moiety that
displays relatively high selectivity to magnesium ion over other al-
kali metals or alkaline earth metal ions (Na+, K+, and Ca2+). FT-IR
and 1H NMR spectroscopy showed that the magnesium ion has a
strong binding interaction with the carbonyl and the methoxy
group adjacent to the carbonyl moiety of 1. Absorption spectros-
copy and ESI-MS spectrometry also revealed the presence of 1:1
and 1:2 stoichiometries (M:L) for the magnesium complexation.
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